3.3.50 \(\int \frac {\sqrt {x} (A+B x^2)}{\sqrt {b x^2+c x^4}} \, dx\) [250]

Optimal. Leaf size=130 \[ \frac {2 B \sqrt {b x^2+c x^4}}{3 c \sqrt {x}}-\frac {(b B-3 A c) x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{3 \sqrt [4]{b} c^{5/4} \sqrt {b x^2+c x^4}} \]

[Out]

2/3*B*(c*x^4+b*x^2)^(1/2)/c/x^(1/2)-1/3*(-3*A*c+B*b)*x*(cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)))^2)^(1/2)/cos(2*
arctan(c^(1/4)*x^(1/2)/b^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*x^(1/2)/b^(1/4))),1/2*2^(1/2))*(b^(1/2)+x*c^(1
/2))*((c*x^2+b)/(b^(1/2)+x*c^(1/2))^2)^(1/2)/b^(1/4)/c^(5/4)/(c*x^4+b*x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.14, antiderivative size = 130, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2064, 2057, 335, 226} \begin {gather*} \frac {2 B \sqrt {b x^2+c x^4}}{3 c \sqrt {x}}-\frac {x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} (b B-3 A c) F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{3 \sqrt [4]{b} c^{5/4} \sqrt {b x^2+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[x]*(A + B*x^2))/Sqrt[b*x^2 + c*x^4],x]

[Out]

(2*B*Sqrt[b*x^2 + c*x^4])/(3*c*Sqrt[x]) - ((b*B - 3*A*c)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + S
qrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(3*b^(1/4)*c^(5/4)*Sqrt[b*x^2 + c*x^4])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2057

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[c^IntPart[m]*(c*x)^FracPa
rt[m]*((a*x^j + b*x^n)^FracPart[p]/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p])), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rule 2064

Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> Sim
p[d*e^(j - 1)*(e*x)^(m - j + 1)*((a*x^j + b*x^(j + n))^(p + 1)/(b*(m + n + p*(j + n) + 1))), x] - Dist[(a*d*(m
 + j*p + 1) - b*c*(m + n + p*(j + n) + 1))/(b*(m + n + p*(j + n) + 1)), Int[(e*x)^m*(a*x^j + b*x^(j + n))^p, x
], x] /; FreeQ[{a, b, c, d, e, j, m, n, p}, x] && EqQ[jn, j + n] &&  !IntegerQ[p] && NeQ[b*c - a*d, 0] && NeQ[
m + n + p*(j + n) + 1, 0] && (GtQ[e, 0] || IntegerQ[j])

Rubi steps

\begin {align*} \int \frac {\sqrt {x} \left (A+B x^2\right )}{\sqrt {b x^2+c x^4}} \, dx &=\frac {2 B \sqrt {b x^2+c x^4}}{3 c \sqrt {x}}-\frac {\left (2 \left (\frac {b B}{2}-\frac {3 A c}{2}\right )\right ) \int \frac {\sqrt {x}}{\sqrt {b x^2+c x^4}} \, dx}{3 c}\\ &=\frac {2 B \sqrt {b x^2+c x^4}}{3 c \sqrt {x}}-\frac {\left (2 \left (\frac {b B}{2}-\frac {3 A c}{2}\right ) x \sqrt {b+c x^2}\right ) \int \frac {1}{\sqrt {x} \sqrt {b+c x^2}} \, dx}{3 c \sqrt {b x^2+c x^4}}\\ &=\frac {2 B \sqrt {b x^2+c x^4}}{3 c \sqrt {x}}-\frac {\left (4 \left (\frac {b B}{2}-\frac {3 A c}{2}\right ) x \sqrt {b+c x^2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {b+c x^4}} \, dx,x,\sqrt {x}\right )}{3 c \sqrt {b x^2+c x^4}}\\ &=\frac {2 B \sqrt {b x^2+c x^4}}{3 c \sqrt {x}}-\frac {(b B-3 A c) x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{3 \sqrt [4]{b} c^{5/4} \sqrt {b x^2+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.06, size = 80, normalized size = 0.62 \begin {gather*} \frac {2 x^{3/2} \left (B \left (b+c x^2\right )+(-b B+3 A c) \sqrt {1+\frac {c x^2}{b}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {c x^2}{b}\right )\right )}{3 c \sqrt {x^2 \left (b+c x^2\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[x]*(A + B*x^2))/Sqrt[b*x^2 + c*x^4],x]

[Out]

(2*x^(3/2)*(B*(b + c*x^2) + (-(b*B) + 3*A*c)*Sqrt[1 + (c*x^2)/b]*Hypergeometric2F1[1/4, 1/2, 5/4, -((c*x^2)/b)
]))/(3*c*Sqrt[x^2*(b + c*x^2)])

________________________________________________________________________________________

Maple [A]
time = 0.38, size = 216, normalized size = 1.66

method result size
risch \(\frac {2 B \,x^{\frac {3}{2}} \left (c \,x^{2}+b \right )}{3 c \sqrt {x^{2} \left (c \,x^{2}+b \right )}}+\frac {\left (3 A c -B b \right ) \sqrt {-b c}\, \sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {x}\, \sqrt {x \left (c \,x^{2}+b \right )}}{3 c^{2} \sqrt {c \,x^{3}+b x}\, \sqrt {x^{2} \left (c \,x^{2}+b \right )}}\) \(175\)
default \(\frac {\sqrt {x}\, \left (3 A \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, \EllipticF \left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-b c}\, c -B \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, \EllipticF \left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-b c}\, b +2 B \,c^{2} x^{3}+2 B b c x \right )}{3 \sqrt {x^{4} c +b \,x^{2}}\, c^{2}}\) \(216\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)*x^(1/2)/(c*x^4+b*x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3/(c*x^4+b*x^2)^(1/2)*x^(1/2)*(3*A*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*
c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*(-b*c
)^(1/2)*c-B*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b
*c)^(1/2))^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*(-b*c)^(1/2)*b+2*B*c^2*x^3+2*B
*b*c*x)/c^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)*x^(1/2)/(c*x^4+b*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)*sqrt(x)/sqrt(c*x^4 + b*x^2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.33, size = 51, normalized size = 0.39 \begin {gather*} -\frac {2 \, {\left ({\left (B b - 3 \, A c\right )} \sqrt {c} x {\rm weierstrassPInverse}\left (-\frac {4 \, b}{c}, 0, x\right ) - \sqrt {c x^{4} + b x^{2}} B c \sqrt {x}\right )}}{3 \, c^{2} x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)*x^(1/2)/(c*x^4+b*x^2)^(1/2),x, algorithm="fricas")

[Out]

-2/3*((B*b - 3*A*c)*sqrt(c)*x*weierstrassPInverse(-4*b/c, 0, x) - sqrt(c*x^4 + b*x^2)*B*c*sqrt(x))/(c^2*x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {x} \left (A + B x^{2}\right )}{\sqrt {x^{2} \left (b + c x^{2}\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)*x**(1/2)/(c*x**4+b*x**2)**(1/2),x)

[Out]

Integral(sqrt(x)*(A + B*x**2)/sqrt(x**2*(b + c*x**2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)*x^(1/2)/(c*x^4+b*x^2)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)*sqrt(x)/sqrt(c*x^4 + b*x^2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {x}\,\left (B\,x^2+A\right )}{\sqrt {c\,x^4+b\,x^2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^(1/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(1/2),x)

[Out]

int((x^(1/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(1/2), x)

________________________________________________________________________________________